6.1 GCF and Factoring by Groups

- Need To Know
- Definitions
- How to factor by GCF
- How to factor by groups

The Greatest Common Factor

Factoring means to write a number as product.
\qquad a polynomial means to \qquad a polynomial
as a \qquad .

The Greatest Common Factor of a polynomial is the largest monomial that divides each term of the polynomial.

Examples - Identify the GCF then FACTOR:
$6 x+12$
$8 y^{4}+12 y^{3}-4 y^{2}$

The Greatest Common Factor

Factor each polynomial	You Try
$a b+a c$	$25 x^{4}+35 x^{3}$
$7 x+7$	$-20 x^{8}-12 x^{7}+4 x^{6}$
$10 x^{6}+15 x^{4}$	
$-35 a^{6} z^{4}+14 a^{4} z^{7}-21 a^{3} z^{7}$	

GCF's may not be Monomials

Factor:
$x($ stuff $)+2($ stuff $)$
$x(x-6)+2(x-6)$

$$
a(z+11)-w(z+11)
$$

Factoring by Groups

Factor by Groups

1. No GCF and 4 terms
2. \qquad
3.

Factor by Groups:

1) $a^{3}-7 a^{2}+4 a-28$
2) $8 x^{3}+12 x^{2}-14 x-21$
3) $20 g^{3}-4 g-35 g^{2}+7$

6.2 Factoring Trinomials

- Need To Know
- Diamond puzzle
- Idea of reverse FOIL
- Factoring Trinomials

A puzzle that builds mental skills needed for factoring.

Find two numbers that:

 multiply to the top answer and- add to the bottom answer.

The Foil Method in Reverse

Multiply:
$(z-6)(z+2)$

Short Cut: FOIL

F - first terms mult.
O - outer terms mult.
I - inner terms mult.
L - last terms mult.

Factor:

$z^{2}-4 z-12$

Reverse FOIL

1. Write out parentheses () ()
2.

.__pair that

- multiplies to the last and
- adds to the middle term.

3.

and check for a match on the add term.
4. Guess, Check " O^{\prime} \& "I", Revise

Factoring Trinomials

Factor:
$x^{2}+5 x+6$

Factor:
$z^{2}-7 z+6$

Factoring Trinomials w/ GCF

Factor:
$2 a^{2}-2 a-24$

Factor:
$3 z^{3}+18 z^{2}+15 z$

Factoring Trinomials w/ 2 Vars

Factor:
$x^{2}+7 x y+12 y^{2}$

Factor:
$z^{2}-3 z a-10 a^{2}$

6.3 More Factoring Trinomials

- Need To Know
- Review diamond puzzle
- Methods of factoring Trinomials

1. Guess, check and revise
2. The Grouping Method
(see the book for this technique)

Diamond Puzzle - Limitations

Factor:

$x^{2}-3 x-10$

Factor:
$2 a^{2}+7 a+6$

Factor:
$21 y^{2}-70 y-56$

Reverse FOIL
0. Standard Form; Factor GCF

1. Write out parentheses () ()
2. Pick the sign pair that

- multiplies to the last and
- adds to the middle term.

3. List all factorings of first term
4. List all factorings of last term
5. Guess, Check "O" \& "I", Revise

Factor:
$10 p^{2}+5 p q-30 q^{2}$

Factor:
$-14 t^{4}+19 t^{3}+3 t^{2}$

Conclusion

Ways to Factor Polynomial

1. By Greatest Common Factor (GCF)
2. By Grouping
3. Factor Trinomials

- Guess, check and revise
- The Group Method (see book)

6.4 Special Factoring

Need To Know

- Recall some formulas
- Factoring the difference of two squares
- Factoring perfect square trinomials
- Formulas to Remember:

1. $(A+B)(A-B)=$ \qquad
2. $(A+B)^{2}=$ \qquad
3. $(A-B)^{2}$ \qquad

Factoring a Difference of Squares

Formulas to Know
$A^{2}-B^{2}=(A+B)(A-B) \quad 9 x^{2}-25$
$A^{2}+2 A B+B^{2}=(A+B)^{2}$
$A^{2}-2 A B+B^{2}=(A-B)^{2}$

$$
49 z^{2}-1
$$

Factoring a Difference of Squares

Formulas to Know

$$
\begin{aligned}
& A^{2}-B^{2} \quad=(A+B)(A-B) \quad X^{2}+25 \\
& A^{2}+B^{2}=(A+B)^{2} \\
& A^{2}+2 A B+B^{2}=\left(A+B^{2}=(A-B)^{2}\right. \\
& A^{2}-2 A B+B^{2}
\end{aligned}
$$

$$
a^{4}-16
$$

Factor- Perfect Square Trinomials

Formulas to Know
$A^{2}-B^{2}=(A+B)(A-B) \quad m^{2}+12 m+36$
$A^{2}+B^{2} \quad C A N ' T$ Factor
$A^{2}+2 A B+B^{2}=(A+B)^{2}$
$A^{2}-2 A B+B^{2}=(A-B)^{2}$

$$
4 x^{2}+12 x+9
$$

Factor- Perfect Square Trinomials

Formulas to Know Factor:
$A^{2}-B^{2}=(A+B)(A-B) \quad 16 x^{2}+49-56 x$
$A^{2}+B^{2} \quad$ CAN'T Factor
$A^{2}+2 A B+B^{2}=(A+B)^{2}$
$A^{2}-2 A B+B^{2}=(A-B)^{2}$

$$
18 x^{2}-60 x+50
$$

Conclusion

Ways to Factor Polynomial

1. By Greatest Common Factor (GCF)
2. By Grouping
3. Factor Trinomials

- Guess, check and revise

4. Factoring with Formulas

- $A^{2}-B^{2}=(A+B)(A-B)$
- $A^{2}+B^{2} \quad$ CANT Factor
- $A^{2}+2 A B+B^{2}=(A+B)^{2}$
- $A^{2}-2 A B+B^{2}=(A-B)^{2}$

6.5 Special Factoring - CUBES

Need To Know

- Factoring a Difference of Cubes
- Factoring a Sum of Cubes
- Using Formulas

Factoring Cubes

Factor $x^{3}-64$

Formulas for Factoring Cubes

Factoring a Sum or Difference of Two Cubes

When factoring a sum or difference of cubes, it can be helpful to remember that $2^{3}=8,3^{3}=27,4^{3}=64,5^{3}=125,6^{3}=216, \ldots 10^{3}=1000$ The list of number: \qquad ... are called perfect cubes.

Practice

Write an equivalent expression by factoring:

$$
x^{3}-27 \quad 11 c^{5}+88 c^{2}
$$

Practice

Write an equivalent expression by factoring:

$$
w^{6}+125 z^{3} \quad y^{3} z^{12}-1
$$

Factoring by Using Formulas

Sum of cubes:

$$
A^{3}+B^{3}=
$$

\qquad
Difference of cubes:

$$
A^{3}-B^{3}=
$$

\qquad
Difference of squares:

$$
A^{2}-B^{2}=
$$

\qquad
Sum of two squares - NO FORMULA $A^{2}+B^{2}$ can't be factored

- Need To Know
- Factoring Review
- Practice

Ways to Factor Based on Terms

A. Check for GCF factoring (Always do first!)
B. Look at the Number of Terms

- Two Terms - Formulas
$A^{2}-B^{2}=(A+B)(A-B)$
$A^{2}+B^{2}$ can NOT factor
- Three Terms

Guess, check, and revise
Formulas: $A^{2}+2 A B+B^{2}=(A+B)^{2}$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

- Four Terms

By Grouping
C. Always Factor Completely - Try to factor more.

Factoring Practice

a. Factor GCF
a. Look at the Number of Terms Two Terms - Use Formula
$A^{2}-B^{2}=(A+B)(A-B)$
$=A^{2}+B^{2}$ can't factor
$=\quad A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
a $\quad A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$
Three Terms
Guess, check, and revise
Formulas
$=A^{2}+2 A B+B^{2}=(A+B)^{2}$
$=A^{2}-2 A B+B^{2}=(A-B)^{2}$
Four Terms
By Grouping Method
$=\quad$ Always Factor Completely Try to factor more!
$y^{5}+8 y^{2}$
Factor:
$3 x^{6}-243 x^{2}$
$y^{5}+8 y^{3}$

[^0]
Factoring Practice

WAYS TO FACTOR
A. Factor GCF
B.

Look at the Number of Terms

- Two Terms - Use Formula
$A^{2}-B^{2}=(A+B)(A-B)$
$A^{2}+B^{2}$ can't factor
$A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
- Three Terms

1. Guess, check, and revise
2. Formulas
$A^{2}+2 A B+B^{2}=(A+B)^{2}$
$A^{2}-2 A B+B^{2}=(A-B)^{2}$

- Four Terms

Factor:

$w^{6}-64$
$15 a^{2} b^{2}-a b-2$
$2 x^{5}+20 x^{4}+50 x^{3}$

By Grouping Method
c. Always Factor Completely

Try to factor more!

Factoring Practice

WAYS TO FACTOR

A. Factor GCF
в. Look at the Number of Terms

- Two Terms - Use Formula
$A^{2}-B^{2}=(A+B)(A-B)$
$A^{2}+B^{2}$ can't factor
$A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
- Three Terms

1. Guess, check, and revise
2. Formulas
$A^{2}+2 A B+B^{2}=(A+B)^{2}$
$A^{2}-2 A B+B^{2}=(A-B)^{2}$

- Four Terms

By Grouping Method
Always Factor Completely
Try to factor more!

6.7 Solving Quadratic Equation

Need To Know

- Vocabulary and facts
- Solving quadratic equations

Definition -
The degree of a polynomial in one variable is the exponent from the term with the highest power.
Fact -
The degree of an equation \qquad
\qquad .
The Principle of Zero Products
For real numbers a and b,

Solve Polynomial Equations

Solve for x :
$(x+3)(x+10)=0$

Solve for z :
$6(5 z-3)(z+8)=0$

Vocabulary

Definition - a quadratic equation is one that can be put in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ where $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$ are real numb. $(\mathrm{a} \neq 0)$.
$a x^{2}+b x+c=0$ is a quadratic in \qquad .

Quadratic Term

Solve Quadratic Equations

Steps to Solve Q.E. Solve for x :

1. \qquad

$$
x^{2}+6 x+8=0
$$

2. \qquad
3. \qquad
4. Check solutions

Solve Quadratic Equations

Steps to Solve Q.E. Solve for x :

1. Set up must $=0 \quad 2 x^{2}+5 x=3$
2. Factor completely
3. Solve each
factor for zero
4. Check solutions

Solve Quadratic Equations

Solve for a:

$$
49 a^{2}-16=0
$$

Solve for z :

$$
30 z^{2}=-12 z
$$

Solve Quadratic Equations

Solve for w :
$w^{2}(2 w-1)=3 w$

Solve for x :
$(2 x-5)\left(3 x^{2}+29 x+56\right)=0$

6.8 Applications

Need To Know

- Recall guide lines to solve word problems
- Recall tool to solve word problems
- Solve word problems with 2 unknowns

Guide Lines for Word Problems

Blueprint for Solving

1. Read and understand the problem (\# of unknowns)
2. Assign variables and write down the meaning of the variable
3. Write an equation
4. Solve the equation
5. Write down your answer using a complete sentence
6. Reread and check your solution

Tools to Reveal the Equation

1. Use keywords
2. Draw a picture
3. Make up a simpler problem
4. Make tables of numbers and look for patterns
5. Use charts to organize your information
6. Make a guess
7. Use a verbal model

> Tools
> 1. Keywords
> 2. Drawing
> 3. Simpler problem
> 4. Tables/Patterns
> 5. Charts
> 6. Guess
> 7. Verbal Model

Steps

The product of two consecutive odd
integers is 63. Find the integers.
2. Translate
3. Carry out
4. Check

Tools

1. Keywords
2. Drawing
3. Simpler problem
4. Tables/Patterns
5. Charts
6. Guess
7. Verbal Model

Pythagoras and The Theorem

Pythagorean Theorem:

In any right triangle,

if a and b are the lengths of the legs and
c is the length of the hypotenuse,

Tools

1. Keywords
2. Drawing
3. Simpler problem
4. Tables/Patterns
5. Charts
6. Guess
7. Verbal Model

[^0]: Try to factor more!

